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INTRODUCTION

Many problems in science and engineering require the solution of a
system of partial differential quaations‘ on a complex two- . or
three-dimensional domain. In order to solve such a problem
numericaily, a boundary-ficted coordinate system is usually;
constructed. For geometries of practicél imbortanéé, it is often

necessary to partition tﬁe domain and to fit a separate coordinate

. 8ystem to each subregion.  Patching these subsystems ‘together to form a

composite system’ can produce irregular grid structures where the

numerical scheme of solution must be modified.

Methuds for treating nonstandard ("gbecial") grid points in
two-dimensional configurations were developed and reported eﬁrlier in
the coursé of this project. -(See Ref.“~$—3T:‘ Verification of theée
methods through compdter experimenﬁation and extension of the methods’
to speéial points in threé-dimensional grids were the primary

fooo
objectives of the project reported here. ™ ° "~ -
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PROJECT RESULTS

The same general approach used to develop and analyze methods for
treatment of special two-dimensional grid structures was applied-to
three-dimensional configurations. The characterization of special

\

points in three dimensions is a direct and straightforward extension of

that reported for two-dimensional geometries"(Ref. 1). Ordinary

three-dimensional grid structures are depicted in Fig. 1.and 2. Such
sfructures may not exist at some boundary points or‘where two or more
subregions of a composite grid meet. Exémples are showﬁ/in Fig. 3 and
4, These nonstandard grid structures ‘}equiée an adjustment of

numerical solution schemes whicn are based on the usual grid-point

orientation shown in Fig. 1 and 2. ' '

As in the case of two-dimensional geometries, a finite-difference
scheme can be appliec at a special point in three dimensioﬁs if the
scﬁeﬁe is rephrased in terms of a suitable local coordinate system.
This local systém must have an ordinary structure (as in Fig. 1 or. 2}
and should not bg too stretched or skewed. The appropriate local
coordinate éystems. for the special points in Fig. 3 and U4  are
illustrated in Fig. 5 and 6. It should Se noted that for some
configurations, a satisfaétofy local coordinate system may not exict,
An =xanple is shown jn Figz. 7.‘ In such cases, a finite—valumé aporsan
mustlbe used to approximate derivatives at the special point.

Irregular grid structures can generally be treated in a simple and

straightforward manner when a finite-volume approach is used. Then, ic

is the configuration of grid cells which is at issue. Extension of the

.

two-dimensional analysis of Ref. 1-3 shows a specizl cell in threa
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than eight cells. The latter type of

Pef. 2 and 3 {attached

- .

erewith), special

~ £}

average of that derivative ovar the cell,

s

where V {3 the volume of cell D, dr i3 an

tne "surfiace bounding cell D, and n-

surface-ar=sa elament dg., The value of the unknown function,

' e=ll  fage i3 ejuated to an avarage of
: 8
o -~ YT s ~ H 1 -
renters of the 22lls sharing that face. The
A
=.3. —, an 2 2211 face (3 equitad $2 the
Vo .
~ e e g \ .
values at the vertices of tnat zel'l fage,

- - -~ ~ Al ~ A p
obtainei by zpolvine fdantity (1) tn an au
versax., The cumzerseme  formulas  for
23 P o . = } + ¥ v
gimensisns are cnitted here,  but  they 24n

exterding the formulas for two-dimensional

the integral form of the governing equations in physi

an in terdfs of tne transformed

functions are scught. A derivative within

unit
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In direct analogy to the apprcach for two dimensions

{curvilinear)
within the special {olume element. Cell-centered values oﬂlthe unknown
he .cell is approximated by
3 surface intezral over the cell boundary which i3 eqﬁivalent to the

In particular, identity (

increcent of volu
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funcstion's
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" . COMPUTATIONAL PROBLEMS
: ‘ ON COMPOSITE GRIDS*

C. Wayne Mastin and H. V. McConnaughey
Mississippi State University :
Mississippi State, MS 39762 .

Abstract

Complex physical regions often necessitate
the use of several rectangular computational
regions. The corresponding physical subregions
may be joined along their boundary or overlapped.
Technigues are described for the numerical
solution of partial differential equations on
either type of composite grid system.

Introduction

Protlems in constructing a computational
grid often arise due t3 the camplex gecmetric
configurations encountered in practical fluid
flow simulations. For example, an aircraft
is ¢omposed of many individual components such
as fuselage,. wings, tail, fins, pylons, and
nacelles. Althcugh e2ch component may be
geometrically simole, and a grid about the in-
dividua) components may be easy to construct,
constructing a grid about the complete con~
figuration is more divficult. Another example
in which complex regions dre encountered may
be found by examining the design of current
turhorachinery. The probiem of constructing a
grid is. comgoundes by the accuracy requirements
of the numerical aigorithm. In order to conirol
the truncation error of the aigorithm, grid
points must be concentrated near boundary layers,
shocks, and other regions where solution gradi-
ents are large. [t'is thus apparent that
where a bouundary-fitted curvilinear coordinate
system is employed in the solution of many
prcbiems of practical interest, several rec-
tangular compytational regions .wst be used.

The grid whizh is dafined by this merging of
several coordinate systems is called a composite
grid.

Two' approaches have deveicped in construct-
ing composite grid systems. The first, and
still the most popular, is to have the grid
Vines pass smoothly from one subregion into the
next. 1,2 The well-kacwn chain rule formulas
car be used to transform from the physical to
the computaticnal variables at the interior
points of each subregion as well as -at points

*This work was 5uppo}ted by the Army Research
Office under Grant DAAG 29-83-K-0101 and by
NASA Langley Research Center urnder Grant
NSG-1577. !
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lying along the sides of two subregions. However
the vertices present a problem whenever the
Jacobian of the transformation is zero or is
undefined. This same problem may also occur at
boundary points of the physical region. One of
the objectives of this report is to classify the
types of singular or unusual points which may
occur and indicate how to derive consistent
difference approximations at such points. The
second approach in working with composite grids
is to overlap the grids for the physical sub-
regions. In this case the solution values are
transferred from the interior points of cone grid
to the boundary points of another grid by an
interpolation formula. Many different inter-
polation schemes are availabie and their effect
on the error in the numerical solution may be
significant. Overlapping grids have been gaining
in popularity due to the inherent fresdom in
generating each subregion grid without considera-
tion of the remaining grids.

Computational techniques and comparative
results on composite grids will be presented in
the solution of simple twc-dimensional mede!
problems. [n the case where grid lines con-
tinue smoothiy between subregions, a Tinite-
volume method s comparad with 2n ADIl schome
using the usual finfte-difference approximations.
The first method {llustrates the use of finite-
volume formulations for solving partial differen-
tial equaticns with second-order derivatives,
while the second demonstrates an implenentation
of ADI schemes on composite grids with singular
points, Solutions are alsc presented from com-
putations on overlapping grids. The questions
to be discussed there are: What e=ffect does the
interpolation procedure have on the accuracy of
the numerical solution? How does the accuracy
vary with the choice of tha particular inter-
polation formula? Specifically, comparisons are
presented using bivariate intarpolation on

quadrilaterals 3,4, Taylor polyromials §, and the

triangular interpoiation schemes commonly used
with finite element methods.

f

Special foints in Continuous Grids

Field points which require special attention
frequently arise when numerically salving ficw
problems on a composite curvilinear ccordinate
system consisting of continuously joined sagments.
This is true whether the numerical method of
solution involves a finite-volume formulation or
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a finite-difference scheme. The special points
encountered in the two approaches are, however,
different in nature, hence thé two cases are
addressed separactely in the following discussion.

In & finite-volume scheme on 3 two-dimen-
sional composite grid, the uausual points which
arise are centers of interior grid cells
having other than four edge< or having a vertex
shared by other than four cells. Examples are
illustrated below. :

/ .

The first type of cell can result when sub-

regions of the segmented domain are joined
between grid lines; the second can occur when

_segments are joined along grid lines, but this

cell requires special care only when second
derivatives are approximated therein. In
either case, treatnent of the associated
"special points" consists simply of replacing
the usual difference representations associated
with four-sided cells having vertices common

to three other cells by expressions derived for
a general M-sided cell.

Recall that a finite-volune formulation
solves for cell-centered function values and

.aporoximates derivatives at a cell center by

line integrals about the cell boundary which
are equivalent to averages over the cell. In
particular, fdentity (1) s used.

- fvfdv-ffn'ds )
o 0

For an N-sided cell of area A with cartesian
centrojd P = (py»_Pp)s vertices vi » 4

(v, vz) 1= 1, 2, ...&+N. ard edges s
joining vi and v'*V (v 1 v1) atong which

a function f and its first partial derivatives

are constant, this approach gives

£aa > s (vi*]- vl
x = 2 - V2

. N i
P! -
fy = A Z f (v] - v?lﬂ)

i=]
' 1
.-l TR R U (2)
fj:x A i feowv - vz)
i=)
N ]
P a-? s (3 141,
f A : fy (V] - v] ) .

Yy

I1-2
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" where the superscripts on f and fts derfvatives

indicate the point or face of evaluation.

Stmple forward/backward differencing can Le
ussd t? approx{mate edge values

fs, f:. and f; when working on a grid whose

{nterior {s "rectangular” in nature in that
right/left and up/down orientations can, be
foilowed through the grid in an unambiguous way.
Such a technique was used in the numerical ex-
ample discussed later. On a more general grid,
an obvious way to approximate

1
£5 {s to average the center values of the two
cells sharing edge s¥. This same averaging scheme

. cannot be repeated to approximate

’ .
f: . and‘f; . however, without rejecting the

customary strategy of avoiding use of values at
points which are not immedfate neighbors of the

.point at which a quantity {s being eveluated.

Instead, we propose the averaging technique:

i m
s, 1 .ov
f '{(fx+f

i+l
X
1 i i+l

AR AUV I (3

V)

where the vertex_ values are obtained by applying
{dentity (1) to auxiliary cells fcrmed by
joining the midpoints of the edges of each cell
to the ceil center. To mike this more precise,
let V be a vertex comon to Q celis ?nd Tabel
the cell faces emanating from ¥ as k' with
midpoints

w! = (m;, m;) {=1, 2 +>+, Q. Then, {f pl =
(p{. p;) is.thé center of the cell having :dges '

k! and ki+]. and if f s taken to equal £ s10ng

ulp! and PIMI*Y | the first partial cerfvatives

of f at ¥ may be aporoaimated by

1
v, -1)% a1 4
MR ol o)
i=1 : (&)
!
vV, 1L R
£, = A E]fp(m]~m‘ )
t= ‘

where A {s the area of the 2Q-faced auxfliary

cell M]P)MZPZ ven HOPQH] fndicated in tne

following diagram.
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Expressions (3), (4), and the average

i i-1 {
e (ff o f)

make the difference formulas in (2) reasonable
appreximations of the first and second partial
derivatives of a function f at the center of
an arbitrary grid cell. Because this
technique {s generally applicable, the
finite-volume agproach {s deemed the most
straight-forward when special paints are pres-
ent in the field. In the alternative finite-
difference approach, it is fcund that specfal
points which arise must be individually ex-
amined before a suitable treatment of each

can be jdzntified. Thus no singie set of
finite-difference formulas can always be
applied to every such point independent of its
context, as will now be discussed.

The special points which are encountered
1n a finite-difference formulation may be
recognized as these grid points (cell vertices)
heving a nonstandard numder of {mmediate
neighbors.  On the boundary of a twe-dimensional
dorain, such pcints have other than five
neighbors but require special treatment only
if Neumann “,uncary conditions are {mposed.
Intarior grid points are “special® {f they have

-other than efght {rmediate neighbors. These

can occur on the {nterface between segmants

~ of a composite grid which are joined along

grid lires, or they can be vertices of a.cell
intersected by an interface in the casa of

subregions joined tetween grid lines (see
below?

In all ceses, the ysual finite-difference
approdch can dbe followed {f the difference
forrulas are rephrased in terms of suftable
Yocal coerdinates which tdentify and label
the stancard number of neighbors. Thompson
has descridbed such local systems for special
boundary pofnts; choices appropriate to
various fnterior special points are fndicated
in Figure 1.

11~ 3
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The usual trarsformaticn relations applied to

the Tocal coordinates (€, n) at a spectal point

P provide accurate <difference approximations of
derivatives with respect to the physical variables
there. This technigue was applied to the special
boundary pofnt shown in Figure 2 when the
assoctated partial differentfal equation'was
nurerically solved using a finite-difference
scheme,

Qverlapping Grids

when overlappiug grids are constructed,
any boundary point of a componant grid G, which
is rot a physical boundary point, must lie in
a cell of some grid H, Regardless of the differ-
ence equations or the algorithm used to solve
the difference equations, there must be a trans-
mission of informatfon between the various grid
systems. Suppose that solution values on M are
transmitted to the grid € by.s general inter-
polation formula

k
f(ro) - 2: ajf(sj) , (s)
. ) 3

where r. 1s a boyndary point of G and the s, are
points gf H. At least some of the s, must

be interior points of H and, de"endiﬂg on the
algorithm, one may wish to require a sufficiently
large overlapping so that all the s, are interior

© points. For example, the latter re&;irerent

would eliminate pessible stability problems when
solving parabolic equatfons. When the value

of f at r. 1s replaced in the difference
equation 3t a neighboring pcint by the inter-
polated value, a new difference eguation results
which will have a different Jocal truncation
error. [t can be shown that a sufficient
condition for consisteacy in th2 approximation
of the first-order derivatives with rescect

to the physical variabies x and y is that

.

k k : k

Loag=tLapyexn 3 apymyy. (8
J-] Jt] J"O' '

where Xo and Y5 denote the coorcinates_of o and
x, and y. denote the coordinates of s.. The

difference approximations will be sec:hé;order
accurate {f in addition
, {7

oy W ey
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There is a loss of one order in the formal
accuracy of the second-order derivative
approximatfions.

Several different fnterpolation schermes will
now bde reviewed. The first scheme s based on
the approximation of a Tayler polynomial. For
each boundary point r, of G, finy the closest
point s, of H. The VQXues of the function
f at thl four neighbors of s., say s . ces ss.
can be used to calculate 5rox1mat ons

‘of the first derivatives of the actual solution.

These approximations can thus be substituted

for the derivatives in a linear Taylor polynomial
at s,. If the resuiting fnterpolation formule

is written in the form of (5), then the cnef-
ficients will satisfy (6). [f the original
algorithm is at least second order accurate,

then there is no loss of accuracy in eplac\ng
the derivatives by differences. Therefore,

the use of this interpolation formula would

give consistent approximations of first
derivatives. Clearly, one could also construct
an approximation of a quadratic Taylor polynomial.
However, the consfistency of the second deriva-
tive aprroaimatiors cannot be guaranteed uniess
the local truncation error in the tinite-
difference equations exceeds two. Therefore, if
a second-grder algorithm is being implermented,

it 15 not clear that a quadratic polynomial would
give better results than a linear polynomial,

The next interpotation formula doss not
rejsire the numerical approximation of deriva-
tives. Let r, “elong to a grid cell C of H
with vertices "S,,..., $,. There exists a
unigue bilinear 'mapping of the unit sguare onto
the cell €. The point r, must be the {magze of
some goint in the unit sduare so that

r =(I-u)(1-v)s + u(l-v)s2 + v(l-u)s4 + uvsg
for 0 < v, v < 1. Since the coordinates of all
points are known, this system can be solved
explicitly for u and v. If f is also assumed
to be a bilinear function of u and v, then

flrgd=(1-u)(1-v)f(s)) +u(i-v)f(s,) + v(1-ulf(s,]
+ uvf(s3). \ (8)

This interpciation formula satisfies (6). This
scheme can also be gereralized to construct
interpotation formulas of arbitrary order. The
procedure for biquadratic interpolation will

be briefly described. Let Q be the union of

four grid cells containing r here exists a
urigue biguadratic mapping o? the unit square
such that the points (u, v) where u=0, 1/2,

1, v=0, 1/2, 1, map to the vertices of Q. MNow
the cocrdirates of the point in the unit square
whicn kas r_ as its {mage can be found by solving
a system ofCtwo big guadratic equations,
Unfortunately, these equations would be difficult
to solve directly. In the examples which

follow, these equations were solved numerically
using Ne~tcn's iteration method. Once the-

...... x- . .- ow W om e e = v s

A
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"approrimate values of u and v Fave “ee caicu-

lated, a biguacratic interpolant of the folloming
form {s computed.

9
f(r,) -12‘ 8 (u, v)f(sj) _ (9},

Here q, 1s the biquadratic Lagrange intersclating
polynofial which assumes the value 1 at the
point of the unit square which maps to s. and’
vanishes at the points which have other arid
points of Q as {mages. This {nterpclation for
myla satisfies both (6) and (7). Thus, imprcved
results would be anticipated using biquadratic
interpolation. [t should be notad that the
above interpolating functions are bilinear and
bfguadratic functions of the variables u and v
which are sometimes referred to as isoparametric
ccordinates. Bilinear and higher-orcer inter-
polation on the physical variables x and y is

‘generally not feasible unless the cell sides are

aligred with the coordinate axes.

Partly due to the need for an iterative
wethod in determining the fnterpoiation
coefficients, it was decided that interpolation
on triangular regfons would be investizated.
Such interpoiation is popular in finite-element
aralysis, and it can be readily adapted to the
present problem. [f rg beiongs to a grid cell
C, then either diagonal of £ deternines a tri-

angular region cont aining g ae1er one of these
tr.angular regions and let 1ts vertices be de-
noted as 51, s2 In this case, the three
equations (6) de;e-1ne the coefficients

a, of the linear ‘.-erpolating formyla (5).

This {s referred to as linear interpclation
since it 1s eguivalent to inte—,,.at1ng by a
lirear function of x and y with values given
at s., s,, and s A quadratic interpolation
can ge cg's"uc‘gd from three points at the
vertices of a tr}angu%ar region and three points
along the sides.' Such a configuration arises
1f the grid points of H are selected as in this
ﬂwre. .

Again the coefficients of the irterpolation
formula are solutions of a linear system of
equations, namely, the equations in (6} and (7}

"Then the i-terpolated value §s obtained by using

these coefficients in (5).

So far only accuracy considerations have
been investigated. When solving elliptic
and parabolic equations, fterative ccnvergence
and stability are alsoc of interest. If only the
interpolation formula (5) s consicered, con-
vergence and stability would be guaranteed if




t¢nts are non- ceﬁutlfe Tris woaic
trerefore be a desirable concition although
certainly not rececsary. The lirear ang bi-
Yirear are the only interpolation formuias

with n_.-vl,"a.e ccefficients. [t can also

te nated that the czavergence or stabiitty of

tre ffnite-di?ference aigerithm would be least
affectel if trere were sufficient overlap of
grids so that all the s. are {nterior grid points
of H. This {s beciuse d11 the fls, ) values

wiuid be updated when the interpol gtxon pracedure

was implemented:

tre cunffic

CUmngBtiuﬂé‘ fxamples

The gretlems considered here are, for the
rost part, simple model prodiens where an

ex2ct sciution §s kniwn. Hence, the accuracy
of the various tezhnigues discussed in.the pre-
vious sectfons can be compered. The physfcal
rejicrs are'alsg qd'ne s ﬂpYe but ‘they do
extibit the computational protlans {nherent in
‘more corplex configurations.

1 ]

The ad.antazes of the cell-centered finile
velume method in the solutison of preblems on
rejicns with special points has already been
cdiccussed. nt 1{terature contains many
arpiications of the method to the sclution of
hypersciic L,rsc'vatwon laws, In the case of

£5.r-gided cells, the metlo¢ can alsc be

a::‘*e” {n a s'-\\ Rtformward manner to the o
sci. e#nlic ang elliptic eguations

by mmard/backward aifferances wnich
wsr earlier. A second-crder ac-

prc cotaired by switzhing the
cirecticon of differencing {n th2 teo cifference
coers =g which must be applied to generate an
azars ytisn of a serond-arder caritative.

Inthe resuits of this report, the four

pooed difference quotlents cttained by all
[RtteRt ions of firmard and bachesrd differencing
have n averazed to yleid a szcond-urder
¢:fference excression which would also reflecss

any s;metry in the grid. It wa2s chbserved

that consideratle simplification in imposing
bouncary conditions resuited 1f only two of the
Ciffzrerce exrre:sicns ware averazed at the
baarZary. 1€ Neumarn baundary conditions were
ified, diffzrzarcing {n the direction ex-
sroto th e re;1:~ was performed only 'in the

nd applt on of the ¢ifference operateor and
ntt i the c 4.a*1on of the first derivative.

W en Cir(ch?e' boundary conditions were impesec,
¢ifferencing in the exterfor direction was per-
fzreed only on the first applization of the
differenze ogerator. This converfence eliminates
the need for false boundary pcints ard permits
direct substitution of efther Cirichlet’ or
SzuTznn data {nto the difference equations. o

Tre finfte volume method k2s been used
to scive Laplace's ezuation fn a regfon about

¢

an eiligse, The grid which was ysed s shown

rn Figure 2. A sinjularity occurs at a vertex

£ the e»nx, e where three grid lines intersect
s

o QO -

I

h

2 single point. In order to compare with a
keown sc) ut1on,vthe bzurdary values of the
pctential function for ideal flow 2bout an

I1~- 6§

“and could also be used here.

p

b pyy * 0 in the interior

P, " 0 on the ellipse A (13;
p = x at the cuter boundery

was sclved for the regfon in Figure 2. Note
that only half-cells are depictes at the outer
boundary where uirfchnet'bCun,ar; conditions are
impcsed at cell centers. ‘The variation of
the comruted surface potential aleong the ellipse
was fn agreement with the theoretizal results.
Yowever, the solution ajzeared to be trénslated
by a small constant term. This wes traced
to a larger than-exgecta? errcr {n the ccarse
grid region near the outer beundary. The error
at the outer boundary was subtractecd from
the nunerical solution and the resulting surface
potential was comnpared with the t“:avetica1
sotution. The absolute error in the surface
atential is plotted in Fi5ure 3 bejinning with
tne vertex at x=0 and endiprg at the vertex
x=1 where the singularity occurs., For the
rurber of grid points which were used, one might
espact more accurate results. This error was
partially due to the large error at the outer
P,unvafy which needs further xu?’SLf jatien.
THe corputed soluticn was also not defines cn
the surface and thus a linear estrapslation
of -dntericr values was used to c::a:n th
nutmerical values which were compared with the
actual sotution, A further source of error
was the fact that the: free stream boundary
conditicn was appifed only cne and a haif crord
lengths from th e ellipse.

Tre computation of the potential function
for flce about the same elliptic cylinder was
alse carried. out using the traditional finite-
difference method. Point SOR iterative methods
are freguently used for sclving eiliptic
equations on composite grids. That method was
used 1n the absve finite-volume calculations

Homever, it was
¢ezided Instesd to use an ADIl method. This
exa~ple {1lustrates the special treat—ent needed
at singular points and the successful applization
of tmplicit updating along boundary cdrves in
rectangular sutregions. In this cise there is
only one computatfonal rectangle, but there
are two re-entrant bounliry Se;jtents which mep
to the same interior grid line.

Laplace's equation, as well as cther
elliptic eqg uatio"s. can be transformed to com-
putational variables and written in the form

B PP T CP
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The all method wnich was used to solve this
ez.ation is the Douglas-Rachford algsrithm
wricn, after derivatives are replaced by

ar
I
oY

¢ifferences, can be written as (12)
i) (1) (1) (i)
FoET - (ot - erY = or, ( + ap + bp + dp!
s %on " ‘D Pee £n D€ ’
fie1) {i+1) {i+1) (i} (1)
rgt - an', ap = r.p* ‘- d .
) Pet £ LTI
' (13)
Cf rourse these equaticns were acpropriately
mraifles at the boundary tec reflect the
helmann Soundary conditions in (10). Suppose
that'the c:-:,~ah.v‘al rezion is the unit sguare
with the frage of the e!..p>e lying along the
§=S ccortingte line. The grid is similar
to Fijure 2. Since Dirichlet boundary conditions
are iT;75ed at grid noints, no half cells are
Loed at the outer boundary. The computations
in (12 and (13) can be carried cut in the
£317owing steps:
{i} Calculate p* on the ellipse.

{11) Using the valua of p* at the singular
point, calculate p* on the re-entrant
sejment of the §=0 coordinate line,

FACOF RIS LAY Y ae - . - -‘" =
{11ty Larcuiate p* on the r23ining €=
constant coordinate lines.

{iv) Calculate (’ & on all n=constant
coardingte 1,.es which 1n ersect the
eilipce at any point other than the

, s¥rj.lar point. .
i:; . .
(v} Calculate p‘' 1 on the union of
31l peirs cfn=zonstant lines «hich
intersect at the sare interior:
point of the re-entrant sejment.

(vi) Using a iocal coofdinate system, the
e (i+1) .
vaiue of p at the singuiar
point is computad ex,11c1tly

o .
fvit) faiculate the v2lues of p(’ 1)
on the *won=icnstant lines which
intersect the singular point.
<o cations of the usual ADI scheme
duoe tc the re-zntrant boundary,
A Le idiezoral systzm was solved when
carr, i he catculetion in (1), The
sycte } containg urircwns on, above,
and tel e re-2nirant cut in the phys1ca1
resion. r fore, the size of the tridiajonal
A}

syste™ in (v) was about twice as large as
these in (iv) ang (vit). large trxd.aw~na1
systems of this type would be comvon in the
use of ALl schémas on corposite grids. The
s;sie7, in general, could contain unknowns
from seseral different subrejions.
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In this particular case, a'l the unkniwnsof a
system lie on n=constant lines. MHowever, the
orientation or the coordinate line does crange
at the cut. [n a more general case, some of tne
unknowns could follcw n=constant lines in cre
susregion and gxconstant lirey, {n ancther sub-
region. Of course these same concepts would
aoply to any of the other fractioral step
aigorithms such as approximate factorization

and locally one dimensicnal spiitting.

The numerical'solution of (1G) using the
iterative algorithm in (12) and (13) was
compared with the exact soluticn, and the
absolute error in the surface potential fs
plotted {n Figure 4. It {s 1{nteresting to
note that there was not a less fn accuracy
at the outer boundary. Therefore, the finite-
difference solution was not subiected to the
same type of translation that was otserved

with the finite-volume solution. The similarities

fn the beravior of the numerical solutifon at
the two vertices of the ellipse {}lustrate

the successful fncorporaticn of a leca2l coordi-
nate system at the singularity. There was

only a slightly larger error at the singular
vertex.

Several interpclation schemes for computing
on overlapping grids have aiready teen discussed.
The ougec'ive ncw is to cowpare the achracy
of these schemes. The fO]]“w'ng example aliso
compares the solutions for Gveriapping grids
with one computed on 3 composite grid #ith
continuously joined grids. The fungtion

log gxzfXZZ'

.u(xf y}=1- Tog (200)

satisfies Lzplace’s equation everywhere except
at the origin. This function was approximated
by sciving Laplace's equation on the region
covered by the cveriapping grid in Figure 5.
The exact boundary values were used. Since
the interior boundary component was taken to
be the unit circle, the solution assumed the
value 1 on the interior beundary and decreased
to nearly zero at the outer boundary. The
maximur aksgiute error in the nymerical
soiution is contained in Table 1. Since the
linear and bilinear interpolation formuias

can be applied with a smaller overiap region,
the error in using these formuias with a

one cell overlap s also included. This problem
was aiso solved on the grid in Figure & which
has approximately the same size grid cells.
The error in that solution is aiso included

in Table 1. Al} the computed solutions had
about the same order of accuracy. The second-
order fnterpolatfon formulas gave better results
in each case, although the difference in the
error was minimal when the same oOverlap was
used.
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A mcre interesting comparison arises from
the function

P

: In
u(x, = sin Do
(o) = s

which is the solution of the Poisson equation:

Ue * Uy T o0

where ¢ is the appropriate source term,

The growth of the higher-order derivatives results
in a larger truncation error in this example.
The maximum absolute error in the numerical
solution for some of the overlap casés in the
previous example s listed in Table 2. For
this function the quadratic Taylor polynomial
gave poorer results than the linear Taylor
pelynomial, Thus we have a case where the
numerical approximation of second-order
derivatives was unreliable. The biguadratic
interpclation formyula, which dces not reguire
numérical differentiation, was clearly superior
to bilirear interpolation.

"Al1 of these results were computed using a
point SCR iterative method. The convergence
rate was considerably greater with an overlap
of two grid cells than with a one grid cell
cverlap. .These results are thus consistent’
with previously reported observations on the
reiation between the extent of overlap and the

. convergence and accuracy of the pumerical

solution.” A slightly faster rate of ccnvergence
was also noted when using those interpolation
formulas with pesitive coefficients, namely,
linear and bilinear. . .

The most difficult task in appiying
overlepsing grids is to partition each sub-
region grid into three sets; those points whare
the difference equation 1is applied, the points
where the interpclation formula s used, and any
points which are not used fn the numerical
salution of the prebiem. The code which was
written to compute the examples of this report
attetpted to automate this procedure as far as
possible. In the process several different
gecretric conficurations were considered. The
sclutior of Laplace's equation with velues 0
and 1 on different boundary components was
computed to test the overlap algorithm. Three
of thgse configurations are {ncluded since

© they are representative of cases whare cver-

lapping grids would be approprfate. Figure

7 typifies a body in a channel or tunnel,

Figure & 1s representative of problems involving
flow atout multiple bodies. Figure 9 indicates

a case where overlapping grids can be used to
avoid the large grid line curvature that would
result 1f a single grid were constructed. L
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Conclusions

Most of the currently available algorithms
for the numerical solution of partial differential
equations can be implemented on composite grid
systems, Llocal coordinate systems may be re-
quired at specfal points where the usual
differencing techniques cannot be applied.
Finite volume formuiations 2re easier to derive
on composite grids, and in principle, may,
be derived for partial differential equations
of all types. When using ADI-type algorithms,
the main problem {s to arrange the order of
the computational steps so that all the
unknowns at each level are updated simultaneously.
Eacept when using ADI schemes, the overlapping
of grids is an alternative tc the mere common
grid construction procedure where gri2 lines
continue smoothly from one subregion into the
next. The accuracy of numerical solutions
¢omputed on overlapping grids {is dependent
on both the intergolation formula and the
extent of the overlap. Several {nterpolation
formulas were analyzed. In the solution
of model problems, the correct choice of the
{nterpolation formula could reduce the error
by a factor of two.
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Figure 4. Error in the surface potential computed Figure 6. Continuously joined grid.
using the finite-difference method.
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Figure 5. Overlapping grid with an gverlep
consisting of a two cell wide strip from each
subregion.

Figure 7. Grid and isotherms for the solution of
Laplace's equation with different constant values
on the tws boundary components. ,
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Figure 9. Grid and fsotherms for the sslution of
Laplace's equation with two different constant
values on the boundary.

Figure 8. Grid and isotherms for the solution of
Laplace's equation with one constant value on the
circles with cormon center and arother constant
value on the other circle. i
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2. Discrete Representation of Derivatives

- Approximate values of the spatial derivatives of a
runction which appear in the transformed equations may be

found at a given point in terms of the function's value lat
that point and at neighboring points. As.noted earlier,
with the problem in the transformed space, only uniform
square grids heed‘be considered, hence the standard forms
for difference representation of derivatives may be used.
. For example, in two dimensions the first, second, and mixed
partials with respect to the curvilinear coordinates € and n
are ordinarily represented at an interior point (i,j) by
finite differences‘or'finipe-volume epressions_ which c¢on-

tain function'values at no more than the nine points shown

below.
i1 | i+1
[} ] Q i+1
° [ o j
n _
° e °'i;1

Thisi centered, nine-poiht "computé;ional molecule" is
usually preferred because of the associated difference
representations which are s&mmetry- preserving and second-
order accurate. Examples of finite-difference approxima-

tions of this type are:

1 _ ‘ _ ‘ .
(fa)lj =-2-(fi,+]'j fi"1,j) ‘ (11;) .
1 -
Fdig = 305,501 7 T ,-1) (110)
(fee)ig = fiar,5 = 2f55 * £1-1,5  (12a)
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(Condig = £1,4+1 = 2f45 * fi,J,1 . , ' - (12p)

(Pendig = T(F0et, 301 = Liat,jmq = Lo, ge1 * Fiop,gmr) (13)

Other second-order approximations of the mixed partial

(fzn)ij which use the n?ne—point molecule are:
%‘f1+1,3+1 - f»1+1,3 = fy,5+1 * 2fyy
RS PR ET I STL I B SRR R PP | QW)
and
'%(fi+1,j = a1, 31 +‘fi,J+1 - 2y
$Ey ey " fi;1,jf1 *fa,) | | (’5?

It is clear that at boundary points, where at most
first partials must be represented, the computational mole-
cule cannot be centered relative to the direction  of the
,coordina;e £% which is constant on the boundary (see diagram

" below).

a
€%
N+2 .
N+t °o °

n .
e T T

m-1 m m+1 .
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There a one~sided difference must be used to approximate
£ a The second-order formula appropriate for the boundary
point indicated above is

=l( -7

(fga)hn > m,n+2 * Mg net = g0

Any standard text on the subject of finite-difference meth-
ods will provide formulas of alternate order and/or based on
other computaiional molecules. | | ' ' ,

A finite*volume' approach uses function values at
grid-cell centers and approximates derivatives at a cell
center by line (surface 1in 3D) integrals about the cell
boundary which are equivalent to averages over the cell. 1In
particular, the identity

Uavg ..% g o de -.% i £ g.do '
3 (16)
is used, where V is the volume of D. Thus, if a function is
assumed constant along a grid-cell face, it is a simple
matter to evaluate the 1line integral in (16) when D is.a
grid cell in transformed space. In terms of the two-
dimensional'grid:. |

l"""‘?""‘l’“"’"‘l
RPUPS T B 1
)+1\ . | L) I .‘l
pm—t——t+—--A
A
n | I | |
R s s
! ! ! !
=Yt 0y
| e
i-1 i i

§
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this approach gives\

(rg)lj = f1+_1_'J -f —l,J ‘ . (173)
2 2

(fn)ij = f (,17b)

-f
1.J+1E 1.J-‘5
With an edge value approximated“as the average of the center

values of the two cells sharing that face, e.g.

1 |
Ly Tty (18)

the values given by (17) are equivalent to ordinary central
differences (cf. Egq. (11)) and hence are second-order ac-

curate. The first partials 6} f may also be assumed con-
stant along each cell edge in order to derive from (16) the
following approximations of second and mixed partials at a

cell center:

2 2 '
Cgndiy = )y 0 = (F) 1 O (190)
' 2 2
Cngdyg = Fndya ;= )y O (190)
' 2

(r (£, g =

nn’ i3 n'y,j+ ”)i,j-;- (19d)

Now, hoﬁeverm the averaging écheme in (18)_cannot be‘used‘to
approximate edge values of the derivatives without ' going
outside the nine-point computational molecule shown above.
Inspead, a second-order accurate representation can be ob-

tained on the nine-point molecule using a forward (backward)
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assignment for the center value of a function and a backward
(forward) assignment for the first partial on a given side.

There are four possible schemes of this type. One uses

Ly TR gty (20)
2 : 2
to evaluate Yf(g,n) at all cell centers according to (17),

andlthen uses

g - 84 » gi,Jﬂl = 815 (where g ',:E or f.) (21)

11,3

2
to evaluate the second and mixed partials given in (19).
This method 1is equivalent to a finite-difference scheme
which approximates first partials by backward dif:eréncés of
the function, and then approximates second and mixed par-
tials by forward differences of the first partials.
Consequently, thé second derivatives which result are equal
to those given in Eq. (12), while the resulting representa-
tions of the two mixed'partials are unequal and only first-
order accurate. - If the two mixed partials are averaged,
however, the second-order expression (15) ‘15 recovered.

This is also true of the reverse scheme:

fi-l Ty f gt Ty (22)
2 2 ,
By fpptey Gk @

Expressions (12) and (14) are similarly recovered from the
‘other two possibi;ities (Ed. 20a, 2ta, 22b, and 23b or Eq.
20b, 21b, 22a, and 23a). The Symmetry-preserving form (13)
can be recovered by averaging the averaged mixed partial ob-
tained in ,one of the first two schemes mentioned and that

" obtained in one of the remaining two.
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The manner in which boundary conditions are treated

.in a finite volume approach depends on the type of condi-

tions imposed. When Dirich;et conditions are prescribed, it

" i{s advantageous to treat the boundary as the center line

(plane in three-dimensions) of a row of cells straddling the
boundary. The centers of these cells then fall on the phys-

ical boundary where the function values are known. When

-Neumann or mixed conditions are given, however, :the boundary

is best treated as coincident with cell faces.
Suppose, for example, that boundary condition (9) is
to be' imposed at the cell edge n=j-1/2 indicated below. ,

)

.j-M/2

i~
[P0 PP PR 7P T 2R 7P 2 é
=14 i+
i-v2 i+V2

Tﬁe edge value of fi'J—1/2 cannot be approximated by the
usual averaging scheme (illustratec by Eq. (18)) 'since there
is no cell center at n=j-1. It can, however, be found in
terms of neighboring cell-centered function valueé by using
boundary . condition - (9) in  connection = with the
forward/backward scheme used to approximate second -‘deriva-
tives at the cel; centers.

Considering the' scheme represented by Eq:.(ZO) ahd

. (21), the values of f along the cell edges shown above are:

fi-%"j 'fi-l,J. fi'j+1 -fij
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It fcllows from Eq. (17) that the first partials of f at the

¢ell center are

(Fglyy = f3y = fyaq,g0 (Fpdyy = Iy

f

2q. (21a,%) then give f‘E and.fn along the cell edges enclos-

ing (1,j) in terms of fi~1,j' fi-1,j+1' fij? fi,j+1' fi+1,j;
X and Xipqe In‘particular.
(fa)_ 1 = fij = fi-1'jl (fn) 1 = fij - xi
le '2‘ i’J ‘é‘ ‘

Substitution of these expressions into boundary condition

-

(9) then determines the edge value X, as
. i ;
' . |

Xy = f = (o - gu/zg®%)!

Loy,

'Nl—t

A T e TIEE SUROILI S RDL

In this way, [, and hence f. and fn’ are found on all
boundary-cell edges in terms of cell-centered values of f.
The finite-difference and finite-volume tecnniques

described thus far are appropriate . for representing all

derivatives {th respect to the curvilinear coordinates,

m4

ven those appearing in the metric quantities. In fact, as
it is shown later in tais chapter and in chapter V, the met-
ric quantities should be represented numerically even when

analytical expressions are availabl’e. Cne might have, for
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example,

,
LN -
K, 5,k T K, g0 (2w

3. Spezial Points

. Many of the expressions given in the'previous section
break down at'sc-called "special points™ in the field where
specia} attention is required in the approximation of deriv-
atives. These points comfionly arise ‘whéﬁ geometrically
complicated ph}sical domains are involved. As indicated in
Chapter II, special points can occur on the domain boundary
and on interfaces between subregions of a composite curvi-
linear coordinate system. Tney may be recognized in physi-
cal space as those interior pdiﬁts having a nonstandard
number of immediate'neighbofs or, equivaléntly, those éoihts
which are-vertices, or the center, of a cell with either: a
nonstandard number of faces or a vertex shared by a nonstan-
dard number  of other‘ceil'. (In'twé dimensional domains,
ordinary interior points have eight' immediate neighbors
{refer to figure on p. 141); standard two-dimensional in-
terior grid cells have (our sides and share each vertex with
three other cells [see diagram on p. 143].) Boundary pointé

are not

soecialuunless'they are vertex-centared and have a
nonstandard numher of immediate\neighbors (other than five
in two dimensions = ses diagram on p. 1ﬁ2 for an brdihary
boundary point) and then ares spécial only when their asso-
ciated boundary conditions ¢ontain spatial deérivatives.
Scme examples of special cell-centered points and special
vertex-centered points are shownbbelow.

v
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When a finite-difference formulation is wused, the

usual apprcach, as described in Section 2, can be followed

ét a'speciél point P 'if the transformed equations and

differénce approximations at‘ that point are rephrased in

‘ ' ‘ terms of'suitable local céordinates. The - local ‘system is

’ chosen so as to orient and label only the surrounding points

to be wused 'in the needed difference expressions. Choices

acaropriat2 to various special points are listed in Tables
1, 2, and 2.

. The difficulties encountered at special peints in a

ume approach are clearly seen by considering the

.image in the transfeormed plane. The first pair of diagrams

belsw, for examples, shows that at centers cf cells having

the usual number of faces but sharing. a vertex with a non-

standard number of.cells,'sdch difficulties amount to mere

bookxeeping complications when only first partials must be

approxiﬁated. Equations (17) and (18) still dpply, but the

indices must be defined to correctly relate the cgll centers

on the two sides of an interfacde., The following diagrams

'
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Diagram of Characterization of Poin* in local
special pojnt associated special cell | computatiunal molecule

(a) Points 1-9, or

Cell center is (b) puints 1, 2, 4-6,
equivalent to special 8, 9 and use the
point 6 in category corresponding
Iv. antisymmetric, 2nd-

order difference for
the cross derivative.

(a) Points 3-10 and 1
Cell center is or 2, or
equivalent to special (b) 3-7, 9, 10 and use

point 5 in category corresponding
v. . antisymmetric, 2nd-

order difference for
cross derivative.

Cell center is
equivalent to special '
point § in category same as IX.
VI.

‘ .- (i) At special vertex
- ' 3: Use points 1-8 and

Cell center is 9 or 10.
equivalent to special
point 6 in category (ii) Treat special
VII ' vertex 9 the same as

special vertex 4 in
category IX.

Table 3. Special vertex-centered interior points
associated with subregians joined between grid lines.
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also 1illustrate the breakdown at all special cell-centered
-points of tie previously~described finite~volume schemes for
approximaﬁing second and mixed partial derivatives. This is
because the forward/backward crientation of the coordinate
system in one segment cannot be consistently.followed across
the interface adjacent to, or intersecting, the special
points. The second pair of djagrams displays the additional
complication associated with grid cells having a nonstandard
number‘éf edges. Such a cell can occur on an interface be-~
tween segments of a composite grid which are joined between
grid lines. When the segments are transformed to their re--
spective images, the separate pieces of the special grid
cell cannot be Joined without distqfting them. It 1is thus

‘unclear how to evaluate the volume and the outward normals
of that transformed cell in order to use identity (16) 1in
the transformed plane. Consequently, at special points of
this type and at all special points whére second derivatives
must be approximated; the governing' equations are best
represented locally in the physical piaﬁe‘where such ambi-
guities do not exist.

subregion A'

sUbregidn A

subregion B'

sdbregion c

subregion D'

\
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Treatment in physical space involves approximation of
the-ofiginal equations by means of identity (16). Thus, for
~a two-dimensional N-sided cell of area A with cartesian cen-
troid P = (p,,pz), vertices Vi-(v§,vé) i-i,Z....,N, and
edges s1 Joining Vi and Vi’t (VN’1-V1) along which a fune-~
tion f and its ri};t partiél derivatives are constant, this
approach gives '

N
i
P! SRR L0 B |
fe = A 1Zr £57(v3 v3)

v .
- 1
A g (v~ vith

y

Ny ’
1
P . -t st iet Lot
fax = A7 Lt (v37 = v)

N
1
P a1 Sl S 83
rYY A .‘121 rY (vi =vi' )

where the superscripts on f and its derivatives indicate the
point or face of evaluation. As in the previous section, an
‘obvious way to approximate £3" is to average the center val-

i

ues of the two cells sharing edge s”. This same- dverag{ng»

scheme cannot be repeated to apprbximate fi , and rsy ’
however, without rejecting ‘the recommended strategy of

avoiding use of values at points which are not immediate
neighbors of the point at which a quantity is being evalu-

ated. Instead, we propose the averaging technique:
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where the vertex values are obtained by applying identity
(16) to auxiliary cells formed by joining the midpoints of
the edges of each cell to the cell center. To make this

more precise, let V be a vertex common to Q cells and label

the cell faces emanating from V as ki with midpoints
Mla(al,md)  1a1,2,...00Q.

Then if Pi-(p%,pé) is the center of the cell having edges ki
and k!*1, and 1f |

! i
t = tP" along Mip! and pini*!

the first partial derivatives of f at V may be approximated

e
v -1 P i+1 _ 1
fx = A 121 f (m2 mz‘)

v ;9 pl 1' 1+1
fy = A Z £ (my - my)

where A is the area of the 2Q-faced auxiliary cell M1P1M2P2
...M9% indicated in the following diagram.
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This technique 1is applicable to all grid cell centers;
however, it is recommended for use only at points where the
methods developed in section 2 break down, since the differ-

ence represehtations associated with those methods are
simpler. '
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